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Ground-state factorization and quantum phase transition in dimerized spin chains
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We study the occurrence of ground-state factorization in dimerized XY spin chains in a transverse field.
Together with the usual ferromagnetic and antiferromagnetic regimes, a third case emerges, with no analogous

in translationally invariant systems, consisting of an antiferromagnetic Neél-type ground state where pairs of
spins represent the unitary cell. Then, we calculate the exact solution of the model and show that the factor-
izing field represent an accidental degeneracy point of the Hamiltonian. Finally, we extend the study of the
existence of ground-state factorization to a more general class of models.
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The study of zero-temperature critical phenomena in
quantum magnetic systems represents since long time a ma-
jor research subject.!~* In particular, the XY model is a very
rich source of information about the quantum behavior of
spin chains because of the availability of an exact analytical
solution.> During the last years, the main interest about spin
chains concerned the relationship between quantum phase
transitions and entanglement.*® Among a number of inter-
esting properties of such systems, it is worth citing the exis-
tence of special values of the external magnetic field, the
parameter which drives the phase transition, which give rise
to ground-state factorization, discovered by Kurmann et al.'
This phenomenon has been observed in two-dimensional lat-
tices through quantum Monte Carlo methods!! and fully ana-
lyzed by Giampaolo et al.'? in a recent publication, where
the factorizing field has been determined for a quite general
class of models. They developed an appropriate measure of
entanglement which vanishes at the factorizing point. So far,
the existence of a factorized ground state has been predicted
only in translationally invariant Hamiltonian models.

Moreover, critical properties of physical systems are dis-
cussed by taking the thermodynamic limit from the begin-
ning. On the other hand, the knowledge of a finite-size solu-
tion clarifies important aspects of this limit. For example, it
is known that the quantum phase diagram of the XY chain in
a transverse field exhibits two different symmetry-broken re-
gions characterized by different behaviors of two-body cor-
relation functions. This dissimilarity has a microscopic origin
easily understood in the finite-size case. Besides these con-
siderations, the study of finite systems is relevant by itself for
the realization of mesoscopic qubits of contemporary
interest.

In this Rapid Communication we discuss a finite-size
dimerized XY spin chain in a transverse field, and analyze
ground-state properties. The interest about such a system,
belonging to a more general class of models,'*!5 is moti-
vated by experimental work on quasicrystals and quasiperi-
odic superlattices.'®!” First of all, we show that the model
admits the existence of a factorized ground state, and then
we discuss the exact solution. The factorizing field turns out
to be an accidental degeneracy point of the Hamiltonian and
falls on a border surface between two regions that, in the
thermodynamic limit, are characterized by different
symmetry-breaking mechanisms. Furthermore, we will be
able to detect the conditions for the existence of ground-state
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factorization also in a more general class of dimerized chains
which are the generalization of the model discussed in Ref.
12.

We start our discussion by considering a nearest-neighbor
dimerized chain of an even number N of spin 1/2:

N2 2

Ji+ v Ji=v ,
H= 2 E T")zcz—znojzcl—m + > 02124105114

=1 i=1
N

~h2, o3, (1)
=1

with ofy,,=of, being o] the ath Pauli matrix (a=x,y,z).
Without loss of generality, we will limit the analysis to posi-
tive fields. The Hamiltonian of Eq. (1) can be recast in the
form of a sum over two-body Hamiltonians H=3Y?(H\!
+H§2)), where

Ji+ v Ji— v

i) _
HEZ = 5124021 14i >

N
0312410214

= hi(05 00+ 05 140) (2)

with iy and h, such that h=h;+h,.

The central feature of H}i) is the invariance under rota-
tions of 7 around the z axis. This is formalized by the van-
ishing of the commutator [H\”,P"]=0, where P\
=0%,_,,:05_14; 1s the parity operator since its eigenvalues are
+1 or —1, according to the number of down spins in the z
direction being even or odd. The above commutation relation
then requires also the eigenstates of H;i) to have definite
parity. The problem is to establish whether there exists a set
of the Hamiltonian parameters such that the ground state is
of the form |¥)=®|¢;). Notice that, if this is the case, as
remarked in Ref. 10, |4y 5,5 14;) must be the ground
state of HE’). The problem is then reduced to find the condi-
tions under which Hg’j admits a factorized ground state.
Now, since Hgi) is not diagonal in the o¢° basis, if
[¢42)_54)| ¥1_1+:) has to be the ground state, each factor must
be of the form |¢)=cos | T)+sin 4| | ), with o, #0, /2.
This, in turn, implies that in the factorized ground state the
parity symmetry is broken and, therefore, looking for the
condition on the parameters of the Hamiltonian leading to
factorization of the ground state amounts to looking for the
condition leading to the degeneracy of the even and odd
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lowest lying eigenstates without invoking the vanishing of
entanglement indicators.'?

There are three different physical scenarios to be consid-
ered: (i) both J, and J, are negative (ferromagnetic case); (ii)
both J, and J, are positive (antiferromagnetic case); (iii) J,
>0 and J,<0 or vice versa (hybrid case). In any of these
cases, factorization appears if and only if y/J,=y,/Jr=k,
i.e., only in the presence of perfect dimerization of the lon-
gitudinal part of H, the factorized point falls in hp
=[(J,+2) /21 =, and tan gy,= = [(1=\T=12)/ x]"2.

(i) In the ferromagnetic case, we find ¢y;_1,;= r_o4i- AS
expected, the factorized state is fully aligned along two pos-
sible directions: |W)=®|¢;).

(ii) In the second (antiferromagnetic) case, we find
Uoi_14i=—n1_o4;- Then, alternate directions for the spin de-
termining a Neél-type ground state are observed:
)= &1 )10

(iii) If both ferromagnetic and antiferromagnetic factor-
ized ground states are of the same kind of those obtained in
the homogeneous XY chain,'? the third (hybrid) case shows
up an original character. Indeed, by assuming, for example,
J1<0 and J,>0 we find the constraints i, ;=,; and
Y=—th1.1- As a consequence, the factorized ground state
assumes the structure

|\I’> ®(N/4 - | lﬂfl+1>| lp;_—l+2>| ¢4T1+3>| ¢4T1+4>-

Thus, we obtain an antiferromagnetic Neél-type ground state,
whose unitary cell is represented by a pair of spins. An ad-
ditional requirement for the existence of the FP in this case is
that N/4 must be an integer number in order to avoid frus-
tration effects.

Now, we discuss the general exact solution of Hamil-
tonian (1) and enlighten the role played by the factorizing
field. The diagonalization method is given in Ref. 18. We
discuss explicitly the finite-size limit.'%!” The first step is the
introduction of the Jordan-Wigner transformation, mapplng
sprns into sprnless fermions,® defined through oj=1- 2c, cs
o= I (1~ 2c,c1)c,, and o7 =I1;.,(1- ZClc,)cl, Wthh leads
to H=Hy—"PH,, with

N2 2
Ho= IE 2 Ui ppcar1si+ Hee)
=1 i=I
N

+ yi(c§,_2+ic;_1+i +H.c.)]- hz (1- ZC}LCI), (3)
I=1

Hy = [Ja(cher — ene]) + yalcle] = enen)], (4)

where the parity operator is 73=H1:1(1 —2c, ¢)). Since
[H,P]=0, all eigenstates of H have definite parity, and we
can proceed to a separate diagonalization of H in the two
subspaces corresponding to P= = 1. Then, the complete set
of eigenvectors of H will be given by the odd eigenstates of
H~=Hy+H, and the even eigenstates of H*="H,—H,. Both
for H™ and H* the diagonalization can be performed through
the division of the lattice in two sublattices: ¢,,_;=a,;, and
¢;=b;, and with the help of two separate Fourier transforms
ai=(N/2)"2Sap exp[—i*]  and  b=(N/2)""?2by exp
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[- 4;kl, where k=0,1,...(N/2)-1 in H~, and &k
=1/2,3/2,...(N/2)-1/2 in H*, getting

H* = 2 [Jajby - b, + vialbl, - Yiab ]
i

—hY, (2-2aja;—2bjby), (5)
k

with J,=J,+J, exp[—iiNkl], Yi=v1— 7> exp[— 147ﬂd] We re-

mark that the difference between H* and H~ consists in the
different set of allowed values of k. Finally, we discuss a
generalized  Bogoliubov  transformation = connecting
ak,afk,bk,bjk, and obtain two different kinds of quasiparti-
cles,

H =2 APQyin—- D+ 2 ADQEE-1),  (6)
k k

where the eigenvalues, belonging to two branches se arated
by an energy gap, are, for k#0,N/4, A(ﬂ \r, o+ \'s , with
=47+ 1>+ |y |* and s, =72 16h2+2|7k|2)+‘]k7k +72J*2,
and

AGY =NAR? + (71— y)* = Uy + 1),

Ay = VAR + (v + )2 = (= )y).
Let us assume, for example, (J;+J,)>0 and J,>J,. Then,
each A, is positive, with the exception of AS”, A} (both of
them are eigenvalues of H~), which can assume negative
values, respectively, for h<hW=\(J,=Jy)*=(y,+7)*/2
and for h<h®=(J;+J,)>= (- 7,)*/2. Let us assume also,

without loss of generality, hg)<h(cz). Due to the foregoing
considerations, the ground state of H* is its vacuum, and the
corresponding eigenvalue is Eg= E/(&N/Z -3 A(”) As for
H-, the lowest energy is E;=—S" 12 |A
ground-state structure depends on h The ground state has
two quasiparticles on modes k=0,N/4 for h<h, one qua-
siparticle on the mode k=0 for h<1) <h< h(z) and finally, it is
the vacuum state for h>h(2)

In order to identify the ground state of 7, we must com-
pare the lowest eigenvalue of H™* belonging to an even eigen-
state (E;"") with the lowest eigenvalue of ™ belonging to
an odd eigenstate (EOdd) Since the vacuum state is even, we
immediately state that the lowest even eigenvalue of H is
EJ"=E{. As far as the lowest odd eigenvalue of H is con-
51dered only inside the region {h(l) h(z)} Where there is one
quasiparticle (odd number of excitations), Eg*'=E,. In fact,
outside this region, E; belongs to even eigenstates (vacuum
or two-quasiparticle state), and we must look to the first-
excited state of H~. Thus, ESY(h>h 2)) Eo(h>h(2>)+A( ),
and EQ¥(h<nll))= Eo(h<h“9)+AN,4

In the thermodynamic limit, the sum over k becomes an
integral, and the vacuum energies of H* and H~ are identi-
cal: E}=E;. Thus, for h{) <h<h®, E=ES**" and sponta-
neous symmetry breakrng comes out. Out31de this range, the
ground state has definite parity, being the energy gap AE
=2A5) for h=h? and AE=2AY), for h=h{"). Thus, al-
though phase transitions take place only for macroscopic
systems, the change in the energy sign of quasiparticles can
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FIG. 1. The energy difference Ef;—E, between the two ground states of H* and H". Inside the range {h(cl),h(cz)} these two states are the
lowest eigenstates of 7. The dimensionless Hamiltonian parameters are J;=1,/,=0.4,y,=0.42,,=0.168. This choice is compatible with
the existence of the factorized ground state [hp=h"(2)], which is found to be around ~=0.63. The other relevant parameters are h(l)

=0.06, h*(1)=0.27, and h¥=0.69. The light gray line refers to a
black curve a chain of 28 spin has been used. In the inset we plot de

chain of 20 spins and the gray line corresponds to 24 spin, while for the
tail of the bigger picture in the case N=24 (light gray) and N=28 (black)

to enlighten the level crossing. As expected, we found N/2 intersection points for each curve.

be used as a precursive property, allowing one to characterize
the transition before performing the thermodynamic limit.

As in the homogeneous chain,’ in the presence of sponta-
neous symmetry breaking, two-body correlation functions
can decrease monotonically or oscillate as a function of the
spin distance depending on the Hamiltonian parameters. Re-
cently, de Lima et al.'* found different regions in the phase
diagram separated by hypersurfaces (collapsing into lines
when y,/J,=7v,/J,). We show that the first one of the sepa-
rating lines corresponds to the factorizing field. Indeed, the
different behavior of the correlation functions derives from
different symmetry-breaking mechanisms. By analyzing low-
est odd and even eigenvalues of H in the symmetry-broken
region for any finite N (Fig. 1), we observe a series of N/2
intersection points h;. The existence of such points has been
discussed for the homogeneous chain in Refs. 20 and 21, and
is responsible for magnetization jumps of Ref. 22. If y,/J,
=1v,/J,, the first crossing point (for decreasing ﬁelds) is at
h=hy for any N. In fact, 3M2TST APk
=sylizs- A(")(hF) =N(J,+J,). That is, h hp is an acci-
dental degeneracy point. If y,/J; # y,/J,, there are no fixed
points. However, with the increasing of N, all the crossing
points are confined inside the region limited by

R (1) =N, = 1) = (v, = »)?/2

and

B(2) = V() + )% = (9, + 7)?2.

These critical values define the separating surfaces of Ref.
14. It is worth noting that when a factorized field exists, hp
=h*(2).

In the thermodynamic limit, this kind of structure implies
two different symmetry-breaking mechanisms. As one can
deduce from the results of Fig. 1, for A*(1) <h<h*(2), as
N— oo, the set {h;} of the degeneracy points becomes a de-
numerable infinity, i.e., an infinite number of crossing points
appear and the two lower energies coincide, while for h(')
<h<h*(1) and for i*(2)<h< h(z) there is the usual symme-
try breaking due to the vanlshmg of the gap, i.e., the ground
state has a definite parity for any finite N, but this difference
goes to zero with 1/N. This is the microscopic mechanism
responsible for dissimilar two-body correlation functions.
Then, like in the homogeneous case,’ as the factorizing field
is reached, correlation functions change character.

To conclude, we extend the study of ground-state factor-
ization to a larger class of XYZ dimerized long-range spin
models: H=X,H,, with

(N/2)-1

X y )
> 105104+ 5 1O O
I=1

N2
+J5105105, l+r]+2[ 720505+ T 2050,

N

+J52050%5,,,] = hE aj, (7)
I=1

where J; are the dimerized coupling constants between spin
pairs at odd distance r. The existence of alternate coupling
on even distances cannot be univocally introduced. However,
we could consider homogeneous coupling for such distances.
Notice that, assuming Jffl =J;f2 for any r, we recover the
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class of models considered by Giampaolo et al. in Ref. 12.
For the sake of clarity, we will consider explicitly the case of
a one-dimensional lattice, but the generalization to higher
dimensions is straightforward.

Let us first note that, to circumvent frustration effects,
(N/r) has to be an integer number for any value of r appear-
ing in H. As already done for the short-range XY chain, we
rewrite H, as a sum of two-body Hamiltonians, with
102124102244y T T 1O 24T 2 ier

I,

. .
+ 031051241051 24ier = P (O304 + 051 0414,) s (8)

)=

and hy ,, hy, such that h=3 (hy ,+h,,).

The simplest case to study is the full ferromagnetic pic-
ture, where all coupling constants are negative. By following
the same procedure introduced above, we proceed to calcu-
late the ground-state energies for the two parity subspaces in
each of two kinds of dimers ('H(l) and H, 2) ) and force sym-
metry breaking. The factorized ground state of each of such
dimers amounts to be |\I’>” (cos ¢ 1) =sin 7| 1)),
® (cos Y1) =sin Y] |)),,,. with

; in+in_2Jii+2\’/]ii_in Jri= T
tan? ¢! = = _(Jy’ Mzt

The existence of a globally factorized ground state implies
that the angle 1,05” must be the same for any of the dimers
involving each site, i.e., it has to be independent both on r
and i. This result is achieved by the following conditions:
ro=wJ, and J7; —y,Jf"i. The value of the factorizing field
is then hF—(1+K)\r(ﬁ—ﬁ)(jﬁ—ﬂ), where the J% are the
global interactions along different axes: J;'=2,J7,.
For the full antiferromagnetic case, let first assume the
nearest-neighbor interaction parameters such that (Jy ;+J7;
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>0. Then, we expect for the factorized ground state the
structure  [W)=® ) b, M sy,). The range-dependent
coupling constants have to be compatible with the existence
of this state. This is possible only if (J;;+J; ;) >0 for any r.
The conditions that ensure the existence of a factorized
ground state are J;,=«J; |, and J; —%J(f,,-, and the factoriz-

ing field amounts to hF=(1+K)\r(‘71+‘7f)(ﬁ +7), with
ja Er‘]r 1

The second, hybrid, way to introduce antiferromagnetism
is to fix, for example (J11+J71)>0 and (J],+J7 ,) <0, ob-
taining |W)=®%"" l|¢41+1>|¢41+2>|‘/’41+3>|‘//41+4> as a factor-
ized ground state This 1mphes J:%:—KJ”, Jia=kdl T
=yJ5; and J3Y=(=1)0"12y, J17 Jeading for the factorized

field to hp= (1+K)\r(f+f)(j+ﬁ) with Ji=2,J;, and
f}—E ( 1)(r—1)/2Jx Y

In summary, we studied the zero-temperature phase dia-
gram of the dimerized XY chain in a transverse field. We
discussed the existence of a fully unentangled ground state,
which depends on whether the parameters of the system sat-
isfy given properties. Furthermore, we showed the role of the
factorizing field inside the general solution of the model. It
represents a border line between two separate symmetry-
broken regions in the space of the Hamiltonian parameters.
In analogy with the homogeneous case, where these two re-
gions are characterized by qualitatively different types of en-
tanglement, namely, parallel and antiparallel
entanglements,” we expect that the same transition could
take place also in our system. On the other hand, also when
the Hamiltonian parameters are not compatible with ground-
state factorization, there is a value of the field which sepa-
rates the two regions. Finally, we extended the search for
ground-state factorization to more general dimerized models.

The author gratefully acknowledges F. de Pasquale and
M. Zannetti for invaluable support.

*Present address: Institute for Cross-Disciplinary Physics and Com-
plex Systems, IFISC (CSIC-UIB), Campus Universitat Illes Bale-
ars, E-07122 Palma de Mallorca, Spain; gianluca@ifisc.uib-
csic.es
1S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, 2000).

2M. Takahashi, Thermodynamics of One-Dimensional Solvable
Models (Cambridge University Press, Cambridge, 1999).

3E. Lieb et al., Ann. Phys. (N.Y.) 16, 407 (1961).

4P. Pfeuty, Ann. Phys. (N.Y.) 57, 79 (1970).

SE. Barouch and B. M. McCoy, Phys. Rev. A 3, 786 (1971).

®T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110
(2002).

7A. Osterloh ef al., Nature (London) 416, 608 (2002).

8G. Vidal er al., Phys. Rev. Lett. 90, 227902 (2003).

L. Amico et al., Rev. Mod. Phys. 80, 517 (2008).

10J, Kurmann et al., Physica A 112, 235 (1982).

T, Roscilde et al., Phys. Rev. Lett. 93, 167203 (2004); 94,
147208 (2005).

128, M. Giampaolo e al., Phys. Rev. Lett. 100, 197201 (2008).

3P, Tong and X. Liu, Phys. Rev. Lett. 97, 017201 (2006).

14]. P. de Lima et al., Phys. Rev. B 75, 214406 (2007).

150. Derzhko et al., Phys. Rev. E 69, 066112 (2004).

16D. Shechtman et al., Phys. Rev. Lett. 53, 1951 (1984).

I7R. Merlin et al., Phys. Rev. Lett. 55, 1768 (1985).

18], H. H. Perk et al., Physica A 81, 319 (1975).

195, Katsura, Phys. Rev. 127, 1508 (1962).

20C. Hoeger et al., J. Phys. A 18, 1813 (1985).

2IR. Rossignoli ez al., Phys. Rev. A 77, 052322 (2008).

22]. Kurmann et al., J. Appl. Phys. 52, 1968 (1981).

23L.. Amico et al., Phys. Rev. A 74, 022322 (2006).

060405-4



